it-swarm.com.ru

Изменить значения на оси графика matplotlib imshow ()

Скажем, у меня есть некоторые входные данные:

data = np.random.normal(loc=100,scale=10,size=(500,1,32))
hist = np.ones((32,20)) # initialise hist
for z in range(32):
    hist[z],edges = np.histogram(data[:,0,z],bins=np.arange(80,122,2))

Я могу построить это с помощью imshow():

plt.imshow(hist,cmap='Reds')

получение: 

enter image description here

Однако значения по оси X не соответствуют входным данным (то есть среднее значение 100, диапазон от 80 до 122). Поэтому я хотел бы изменить ось X, чтобы показать значения в edges.

Я пытался:

ax = plt.gca()
ax.set_xlabel([80,122]) # range of values in edges
...
# this shifts the plot so that nothing is visible

а также 

ax.set_xticklabels(edges)
...
# this labels the axis but does not centre around the mean:

enter image description here

Любые идеи о том, как я могу изменить значения оси, чтобы отражать входные данные, которые я использую?

58
atomh33ls

Я бы постарался избежать изменения xticklabels, если это возможно, иначе это может привести к путанице, если вы, например, перенесете свою гистограмму на дополнительные данные. 

Определение диапазона вашей сетки, вероятно, является наилучшим, и с imshow это можно сделать, добавив ключевое слово extent. Таким образом, оси настраиваются автоматически. Если вы хотите изменить метки, я бы использовал set_xticks, возможно, с некоторым форматером. Изменение ярлыков напрямую должно быть последним средством.

fig, ax = plt.subplots(figsize=(6,6))

ax.imshow(hist, cmap=plt.cm.Reds, interpolation='none', extent=[80,120,32,0])
ax.set_aspect(2) # you may also use am.imshow(..., aspect="auto") to restore the aspect ratio

enter image description here

96
Rutger Kassies

У меня была похожая проблема, и Google отправлял меня на этот пост. Мое решение было немного другим и менее компактным, но, надеюсь, это может кому-то пригодиться.

Показ вашего изображения с помощью matplotlib.pyplot.imshow - это, как правило, быстрый способ отображения 2D-данных. Однако это по умолчанию помечает оси с количеством пикселей. Если 2D-данные, которые вы выводите, соответствуют некоторой однородной сетке, определенной массивами x и y, то вы можете использовать matplotlib.pyplot.xticks и matplotlib.pyplot.yticks для маркировки осей x и y, используя значения в этих массивах. Они будут ассоциировать некоторые метки, соответствующие фактическим данным сетки, с количеством пикселей на осях. И делать это намного быстрее, чем, например, использовать что-то вроде pcolor.

Вот попытка сделать это с вашими данными:

import matplotlib.pyplot as plt

# ... define 2D array hist as you did

plt.imshow(hist, cmap='Reds')
x = np.arange(80,122,2) # the grid to which your data corresponds
nx = x.shape[0]
no_labels = 7 # how many labels to see on axis x
step_x = int(nx / (no_labels - 1)) # step between consecutive labels
x_positions = np.arange(0,nx,step_x) # pixel count at label position
x_labels = x[::step_x] # labels you want to see
plt.xticks(x_positions, x_labels)
# in principle you can do the same for y, but it is not necessary in your case
0
rxs