it-swarm.com.ru

Есть ли функция NumPy для возврата первого индекса чего-либо в массиве?

Я знаю, что существует метод для списка Python, который возвращает первый индекс чего-либо:

>>> l = [1, 2, 3]
>>> l.index(2)
1

Есть ли что-то подобное для массивов NumPy?

395
Nope

Да, вот ответ с массивом NumPy array и значением item для поиска:

itemindex = numpy.where(array==item)

В результате получается кортеж с сначала всеми индексами строк, а затем всеми индексами столбцов.

Например, если массив имеет два измерения и содержит ваш элемент в двух местах, то

array[itemindex[0][0]][itemindex[1][0]]

будет равна вашему предмету, и поэтому будет

array[itemindex[0][1]][itemindex[1][1]]

numpy.where

465
Alex

Если вам нужен индекс первого вхождения только одно значение, вы можете использовать nonzero (или where, что в данном случае равнозначно):

>>> t = array([1, 1, 1, 2, 2, 3, 8, 3, 8, 8])
>>> nonzero(t == 8)
(array([6, 8, 9]),)
>>> nonzero(t == 8)[0][0]
6

Если вам нужен первый индекс каждого из много значений, вы, очевидно, могли бы делать то же самое, что и выше, но есть хитрость, которая может быть быстрее. Следующее находит индексы первого элемента каждой подпоследовательности :

>>> nonzero(r_[1, diff(t)[:-1]])
(array([0, 3, 5, 6, 7, 8]),)

Обратите внимание, что он находит начало как подпоследовательности 3s, так и обеих подпоследовательностей 8s:

[1, 1, 1, 2, 2, , 8, =, 8, 8]

Так что это немного отличается от нахождения первого вхождения каждого значения. В вашей программе вы можете работать с отсортированной версией t, чтобы получить то, что вы хотите:

>>> st = sorted(t)
>>> nonzero(r_[1, diff(st)[:-1]])
(array([0, 3, 5, 7]),)
62
Vebjorn Ljosa

Вы также можете преобразовать массив NumPy в список в эфир и получить его индекс. Например,

l = [1,2,3,4,5] # Python list
a = numpy.array(l) # NumPy array
i = a.tolist().index(2) # i will return index of 2
print i

Это напечатает 1.

40
Hima

Если вы собираетесь использовать это как индекс для чего-то другого, вы можете использовать логические индексы, если массивы являются трансляционными; вам не нужны явные индексы. Абсолютно простой способ сделать это - просто индексировать на основе истинного значения.

other_array[first_array == item]

Любая логическая операция работает:

a = numpy.arange(100)
other_array[first_array > 50]

Ненулевой метод также принимает логические значения:

index = numpy.nonzero(first_array == item)[0][0]

Два нуля относятся к кортежу индексов (при условии, что first_array равен 1D), а затем к первому элементу в массиве индексов.

14
Matt

Просто чтобы добавить очень производительную и удобную альтернативу numba на основе np.ndenumerate , чтобы найти первый индекс:

from numba import njit
import numpy as np

@njit
def index(array, item):
    for idx, val in np.ndenumerate(array):
        if val == item:
            return idx
    # If no item was found return None, other return types might be a problem due to
    # numbas type inference.

Это довольно быстро и имеет дело с многомерными массивами :

>>> arr1 = np.ones((100, 100, 100))
>>> arr1[2, 2, 2] = 2

>>> index(arr1, 2)
(2, 2, 2)

>>> arr2 = np.ones(20)
>>> arr2[5] = 2

>>> index(arr2, 2)
(5,)

Это может быть намного быстрее (потому что это короткое замыкание операции), чем любой подход, использующий np.where или np.nonzero.


Однако np.argwhere также может изящно иметь дело с многомерными массивами (вам необходимо вручную привести его к кортежу и это не закорочено) но не получится, если совпадение не найдено:

>>> Tuple(np.argwhere(arr1 == 2)[0])
(2, 2, 2)
>>> Tuple(np.argwhere(arr2 == 2)[0])
(5,)
13
MSeifert

l.index(x) возвращает наименьшее i такое, что i является индексом первого вхождение х в списке.

Можно смело предположить, что функция index() в Python реализована так, что останавливается после нахождения первого соответствия, и это приводит к оптимальной средней производительности.

Чтобы найти остановку элемента после первого совпадения в массиве NumPy, используйте итератор ( ndenumerate ).

In [67]: l=range(100)

In [68]: l.index(2)
Out[68]: 2

Массив NumPy:

In [69]: a = np.arange(100)

In [70]: next((idx for idx, val in np.ndenumerate(a) if val==2))
Out[70]: (2L,)

Обратите внимание, что оба метода index() и next возвращают ошибку, если элемент не найден. С next можно использовать второй аргумент для возврата специального значения в случае, если элемент не найден, например,.

In [77]: next((idx for idx, val in np.ndenumerate(a) if val==400),None)

В NumPy есть и другие функции (argmax, where и nonzero), которые можно использовать для поиска элемента в массиве, но у всех них есть недостаток - проходить весь массив, ища все вхождений, поэтому не оптимизированы для поиска первого элемента. Также обратите внимание, что where и nonzero возвращают массивы, поэтому вам нужно выбрать первый элемент, чтобы получить индекс.

In [71]: np.argmax(a==2)
Out[71]: 2

In [72]: np.where(a==2)
Out[72]: (array([2], dtype=int64),)

In [73]: np.nonzero(a==2)
Out[73]: (array([2], dtype=int64),)

Сравнение времени

Просто проверяя, что для больших массивов решение, использующее итератор, быстрее , когда искомый элемент находится в начале массива (используя %timeit в оболочке IPython) :

In [285]: a = np.arange(100000)

In [286]: %timeit next((idx for idx, val in np.ndenumerate(a) if val==0))
100000 loops, best of 3: 17.6 µs per loop

In [287]: %timeit np.argmax(a==0)
1000 loops, best of 3: 254 µs per loop

In [288]: %timeit np.where(a==0)[0][0]
1000 loops, best of 3: 314 µs per loop

Это открытый проблема NumPy GitHub .

Смотрите также: Numpy: быстро найти первый индекс значения

8
user2314737

Для индексации по любым критериям вы можете сделать что-то вроде следующего:

In [1]: from numpy import *
In [2]: x = arange(125).reshape((5,5,5))
In [3]: y = indices(x.shape)
In [4]: locs = y[:,x >= 120] # put whatever you want in place of x >= 120
In [5]: pts = hsplit(locs, len(locs[0]))
In [6]: for pt in pts:
   .....:         print(', '.join(str(p[0]) for p in pt))
4, 4, 0
4, 4, 1
4, 4, 2
4, 4, 3
4, 4, 4

И вот быстрая функция, чтобы сделать то, что делает list.index (), за исключением того, что не вызывает исключение, если оно не найдено. Осторожно - это, вероятно, очень медленно на больших массивах. Вы, вероятно, можете использовать это для массивов, если вы предпочитаете использовать его как метод.

def ndindex(ndarray, item):
    if len(ndarray.shape) == 1:
        try:
            return [ndarray.tolist().index(item)]
        except:
            pass
    else:
        for i, subarray in enumerate(ndarray):
            try:
                return [i] + ndindex(subarray, item)
            except:
                pass

In [1]: ndindex(x, 103)
Out[1]: [4, 0, 3]
6
Autoplectic

Для 1D-массивов я бы порекомендовал np.flatnonzero(array == value)[0], что эквивалентно np.nonzero(array == value)[0][0] и np.where(array == value)[0][0], но позволяет избежать уродливости распаковки 1-элементного кортежа.

5
1''

Для одномерных отсортированных массивов было бы намного проще и эффективнее O(log(n)) использовать - numpy.searchsorted , который возвращает целое число NumPy (позиция). Например,

arr = np.array([1, 1, 1, 2, 3, 3, 4])
i = np.searchsorted(arr, 3)

Просто убедитесь, что массив уже отсортирован

Также проверьте, что возвращаемый индекс i действительно содержит искомый элемент, так как главная цель searchsorted - найти индексы, в которые должны быть вставлены элементы для поддержания порядка.

if arr[i] == 3:
    print("present")
else:
    print("not present")
4
Alok Nayak

В NumPy существует множество операций, которые можно объединить для достижения этой цели. Это вернет индексы элементов, равные item:

numpy.nonzero(array - item)

Затем вы можете взять первые элементы списков, чтобы получить один элемент.

4
Ned Batchelder

Альтернативой выбору первого элемента из np.where () является использование выражения генератора вместе с перечислением, например:

>>> import numpy as np
>>> x = np.arange(100)   # x = array([0, 1, 2, 3, ... 99])
>>> next(i for i, x_i in enumerate(x) if x_i == 2)
2

Для двумерного массива можно сделать:

>>> x = np.arange(100).reshape(10,10)   # x = array([[0, 1, 2,... 9], [10,..19],])
>>> next((i,j) for i, x_i in enumerate(x) 
...            for j, x_ij in enumerate(x_i) if x_ij == 2)
(0, 2)

Преимущество этого подхода состоит в том, что он прекращает проверку элементов массива после того, как найдено первое совпадение, тогда как np.where проверяет все элементы на совпадение. Выражение генератора будет быстрее, если в массиве есть совпадение.

2
Noyer282

Пакет numpy_indexed (заявление об отказе от ответственности, я его автор) содержит векторизованный эквивалент list.index для numpy.ndarray; то есть:

sequence_of_arrays = [[0, 1], [1, 2], [-5, 0]]
arrays_to_query = [[-5, 0], [1, 0]]

import numpy_indexed as npi
idx = npi.indices(sequence_of_arrays, arrays_to_query, missing=-1)
print(idx)   # [2, -1]

Это решение векторизовало производительность, обобщает до ndarrays и имеет различные способы обработки пропущенных значений.

1
Eelco Hoogendoorn